
Filter Design Toolbox™ 4
Getting Started Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Filter Design Toolbox™ Getting Started Guide

© COPYRIGHT 2000–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2007 Online Only Revised for Version 4.1 (Release 2007a)
September 2007 Online Only Revised for Version 4.2 (Release 2007b)
March 2008 Online Only Revised for Version 4.3 (Release 2008a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Product Overview

1
Introduction . 1-2

Uses with Other MathWorks™ Products 1-3

Key Features . 1-3

Designing a Filter in Two Steps

2
How the Toolbox Works . 2-2

Basic Filter Design Process . 2-3

Using Filterbuilder to Design a Filter 2-7

Designing Multirate and Multistage Filters

3
Multirate Filters . 3-2

Why Are Multirate Filters Needed? 3-2
Overview of Multirate Filters . 3-2

Multistage Filters . 3-6
Why Are Multistage Filters Needed? 3-6
Optimal Multistage Filters in Filter Design Toolbox™

Software . 3-6

iii

Example Case for Multirate/Multistage Filters 3-8
Example Overview . 3-8
Single-Rate/Single-Stage Equiripple Design 3-8
Reducing Computational Cost Using Mulitrate/Multistage

Design . 3-9
Comparing the Response . 3-10
Further Performance Comparison . 3-10

Converting from Floating-Point to Fixed-Point

4
Overview of Fixed-Point Filters . 4-2

What Is a Fixed-Point Filter? . 4-2

Floating-Point to Fixed-Point Conversion 4-3
Process Overview . 4-3
Designing the Filter . 4-3
Quantizing the Coefficients . 4-4
Dynamic Range Analysis . 4-7
Comparing Magnitude Response and Magnitude Response

Estimate . 4-8

Data Types . 4-11
Data Type Support . 4-11
Fixed Data Type Support . 4-11
Single Data Type Support . 4-11

Designing Adaptive Filters

5
Adaptive Filters Tutorial . 5-2

Signal Enhancement Example Overview 5-2
Create the Signals for Adaptation . 5-2
Construct Two Adaptive Filters . 5-3
Choose the Step Size . 5-4
Set the Adapting Filter Step Size . 5-5

iv Contents

Filter with the Adaptive Filters . 5-5
Compute the Optimal Solution . 5-5
Plot the Results . 5-6
Compare the Final Coefficients . 5-7
Reset the Filter Before Filtering . 5-7
Investigate Convergence Through Learning Curves 5-8
Compute the Learning Curves . 5-9
Compute the Theoretical Learning Curves 5-10

Examples

A
Getting Started . A-2

Using Filterbuilder . A-2

Index

v

vi Contents

1

Product Overview

Introduction (p. 1-2)

Uses with Other MathWorks™
Products (p. 1-3)

Key Features (p. 1-3)

1 Product Overview

Introduction
Filter Design Toolbox™ software is a collection of tools that provides
advanced techniques for designing, simulating, and analyzing digital
filters. It extends the capabilities of Signal Processing Toolbox™ software
with filter architectures and design methods for complex real-time DSP
applications, including adaptive filtering and multirate filtering, as well as
filter transformations.

1-2

Uses with Other MathWorks™ Products

Uses with Other MathWorks™ Products
Used with Fixed-Point Toolbox™, Filter Design Toolbox™ software provides
functions that simplify the design of fixed-point filters and the analysis of
quantization effects. When used with Filter Design HDL Coder™ product,
Filter Design Toolbox software lets you generate VHDL and Verilog code
for fixed-point filters. Filter Design Toolbox software also brings advanced
filter design capabilities to Simulink® and the Signal Processing Blockset™
software.

Key Features
• Advanced FIR filter design methods, including minimum-order,

minimum-phase, shaped-stopband, halfband, complexity-optimized
multistage, Farrow, and interpolated FIR

• Advanced IIR design methods, including arbitrary magnitude, group-delay
equalizers, parametric equalizers, octave, halfband, quasi-linear phase,
and comb filters

• Multirate filter design methods, including cascaded integrator-comb (CIC),
CIC compensator, polyphase FIR and IIR, and multistage Nyquist filters

• Support for efficient IIR filter implementations, including second-order
sections and lattice wave digital filters

• Adaptive filter design, analysis, and implementation, including LMS-based,
RLS-based, lattice-based, frequency-domain, fast transversal, and affine
projection

1-3

1 Product Overview

1-4

2

Designing a Filter in Two
Steps

How the Toolbox Works (p. 2-2) Describes the design process for a
simple filter using Filter Design
Toolbox™ software

Basic Filter Design Process (p. 2-3) Guides through the basic steps of
the design process

Using Filterbuilder to Design a
Filter (p. 2-7)

Describes a filter design process
using Filterbuilder

2 Designing a Filter in Two Steps

How the Toolbox Works
The characteristic feature of Filter Design Toolbox™ software is that it places
emphasis on the filter specification in the process of filter design. This
specification-centric approach places less emphasis on the choice of specific
filter algorithms, and more emphasis on performance during the design a good
working filter. For example, you can take a given set of design parameters for
the filter, such as a stopband frequency, a passband frequency, and a stopband
attenuation, and— using these parameters— design a specification object for
the filter. You can then implement the filter using this specification object.
Using this approach, it is also possible to compare different algorithms as
applied to a set of specifications.

There are two distinct objects involved in filter design:

• Specification Object — Captures the required design parameters of a filter

• Implementation Object — Describes the designed filter; includes the array
of coefficients and the filter structure

The distinction between these to objects are at the core of the filter design
methodology. The basic attributes of each of these objects are outlined in the
following table.

Specification Object Implementation Object

High-level specification Filter coefficients

Algorithmic properties Filter structure

You can run the code in the following examples from the Help browser (select
the code, right-click the selection, and choose Evaluate Selection from
the context menu), or you can enter the code on the MATLAB® command
line. Before you begin this example, start MATLAB and verify that you
have installed Signal Processing Toolbox™ software and Filter Design
Toolbox software (enter ver at the command prompt). You should see Filter
Design Toolbox software and Signal Processing Toolbox software in the list
of installed products.

2-2

Basic Filter Design Process

Basic Filter Design Process
Use the following two steps to design a simple filter.

1 Create a filter specification object.

2 Design your filter.

Example — Design a Filter in Two Steps

Assume that you want to design a bandpass filter. Typically a bandpass filter
is defined as shown in the following figure.

In this example, a sampling frequency of Fs = 48 kHz is used. This bandpass
filter has the following specifications, specified here using MATLAB® code:

A_stop1 = 60; % Attenuation in the first stopband = 60 dB
F_stop1 = 8400; % Edge of the stopband = 8400 Hz
F_pass1 = 10800; % Edge of the passband = 10800 Hz
F_pass2 = 15600; % Closing edge of the passband = 15600 Hz
F_stop2 = 18000; % Edge of the second stopband = 18000 Hz
A_stop2 = 60; % Attenuation in the second stopband = 60 dB
A_pass = 1; % Amount of ripple allowed in the passband = 1 dB

In the following two steps, these specifications are passed to the
fdesign.bandpass method as parameters. For more information about

2-3

2 Designing a Filter in Two Steps

passing specifications to the fdesign filter specification object, refer to the
fdesign reference.

Step 1
To create a filter specification object, evaluate the following code at
the MATLAB prompt:

Now, pass the filter specifications that correspond to the default
Specification — fst1,fp1,fp2,fst2,ast1,ap,ast2 — without
specifying the Specification string. This example adds fs as the final
input argument to specify the sampling frequency of 48 kHz.

>> BandPassSpecObj = ...
fdesign.bandpass('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2', ...

F_stop1, F_pass1, F_pass2, F_stop2, A_stop1, A_pass, ...
A_stop2, 48000)

BandPassSpecObj =

Response: 'Bandpass'
Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'

Description: {7x1 cell}
NormalizedFrequency: false

Fs: 48000
Fstop1: 8400
Fpass1: 10800
Fpass2: 15600
Fstop2: 18000
Astop1: 60
Apass: 1

Astop2: 60

Note The order of the filter is not specified, allowing a degree of
freedom for the algorithm design in order to achieve the specification.
The design will be a minimum order design.

The specification parameters, such as Fstop1, are all given default
values when none are provided. You can change the values of the

2-4

Basic Filter Design Process

specification parameters after the filter specification object has been
created. For example, if there are two values that need to be changed,
Fpass2 and Fstop2, use the set command, which takes the object first,
and then the parameter value pairs. Evaluate the following code at
the MATLAB prompt:

>> set(BandPassSpecObj, 'Fpass2', 15800, 'Fstop2', 18400)

BandPassSpecObj is the new filter specification object which contains
all the required design parameters, including the filter type.

Step 2
Design the filter by using the design command. You can access the
design methods available for you specification object by calling the
designmethods function. For example, in this case, you can execute
the command

>> designmethods(BandPassSpecObj)

Design Methods for class
fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

After choosing a design method use, you can evaluate the following at the
MATLAB prompt (this example assumes you’ve chosen ’equiripple’):

>> BandPassFilt = design(BandPassSpecObj, 'equiripple')

BandPassFilt =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x44 double]

2-5

2 Designing a Filter in Two Steps

PersistentMemory: false

Note If you do not specify a design method, a default method will be
used. For example, you can execute the command

>> BandPassFilt = design(BandPassSpecObj)

BandPassFilt =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x44 double]

PersistentMemory: false

and a design method will be selected automatically.

To check your work, you can plot the filter magnitude response using the
Filter Visualization tool. Verify that all the design parameters are met:

>> fvtool(BandPassFilt) %plot the filter magnitude response

2-6

Using Filterbuilder to Design a Filter

Using Filterbuilder to Design a Filter
FilterBuilder presents the option of designing a filter using a GUI dialog
box as opposed to the command line instructions. You use FilterBuilder to
design the same bandpass filter designed in the previous section, “Basic Filter
Design Process” on page 2-3

Example — Using Filterbuilder to Design a Simple Filter

To design the filter using FilterBuilder:

1 Type the following at the MATLAB® prompt:

filterbuilder

The following dialog box opens:

2 Select Bandpass filter response from the list in the dialog box, and hit the
OK button. The following dialog box opens:

2-7

2 Designing a Filter in Two Steps

3 Enter the correct frequencies for Fpass2 and Fstop2, as shown in the
preceding figure, then click OK. Here the specification uses normalized
frequency, so that the passband and stopband edges are expressed as a
fraction of the Nyquist frequency (in this case, 48/2 kHz). The following
message appears at the MATLAB prompt:

The variable 'Hbp' has been exported to the command window.

If you display the Workspace tab, as shown in the following figure, you see
the object Hbp has been placed on your workspace.

2-8

Using Filterbuilder to Design a Filter

4 To check your work, plot the filter magnitude response using the Filter
Visualization tool. Verify that all the design parameters are met:

fvtool(Hbp) %plot the filter magnitude response

2-9

2 Designing a Filter in Two Steps

2-10

3

Designing Multirate and
Multistage Filters

Multirate Filters (p. 3-2) Defines a multirate filter and
describes its uses

Multistage Filters (p. 3-6) Defines a multistage filter and
describes its uses

Example Case for
Multirate/Multistage Filters
(p. 3-8)

Shows the efficiency gains that
are possible when using multirate
and multistage filters for certain
applications.

3 Designing Multirate and Multistage Filters

Multirate Filters

In this section...

“Why Are Multirate Filters Needed?” on page 3-2

“Overview of Multirate Filters” on page 3-2

Why Are Multirate Filters Needed?
Multirate filters can bring efficiency to a particular filter implementation.
In general, multirate filters are filters in which different parts of the filter
operate at different rates. The most obvious application of such a filter is
when the input sample rate and output sample rate need to differ (decimation
or interpolation) — however, multirate filters are also often used in designs
where this is not the case. For example you may have a system where the
input sample rate and output sample rate are the same, but internally there is
decimation and interpolation occurring in a series of filters, such that the final
output of the system has the same sample rate as the input. Such a design
may exhibit lower cost than could be achieved with a single-rate filter for
various reasons. For more information about the relative cost benefit of using
multirate filters, refer to [2] Harris, Fredric J., Multirate Signal Processing
for Communication Systems, Prentice Hall PTR, 2004.

Overview of Multirate Filters
A filter that reduces the input rate is called a decimator. A filter that
increases the input rate is called an interpolator. To visualize this process,
examine the following figure, which illustrates the processes of interpolation
and decimation in the time domain.

3-2

Multirate Filters

If you start with the top signal, sampled at a frequency Fs, then the bottom
signal is sampled at Fs/2 frequency. In this case, the decimation factor, or M,
is 2.

The following figure illustrates effect of decimation in the frequency domain.

3-3

3 Designing Multirate and Multistage Filters

In the first graphic in the figure you can see a signal that is critically sampled,
i.e. the sample rate is equal to two times the highest frequency component
of the sampled signal. As such the period of the signal in the frequency
domain is no greater than the bandwidth of the sampling frequency. When
reduce the sampling frequency (decimation), aliasing can occur, where the
magnitudes at the frequencies near the edges of the original period become
indistinguishable, and the information about these values becomes lost. To
work around this problem, the signal can be filtered before the decimation
process, avoiding overlap of the signal spectra at Fs/2.

An analogous approach must be taken to avoid imaging when performing
interpolation on a sampled signal. For more information about the effects of
decimation and interpolation on a sampled signal, refer to any one of the
references in the “Bibliography” section of the Filter Design Toolbox™ User
Guide.

The following list summarizes some guidelines and general requirements
regarding decimation and interpolation:

• By the Nyquist Theorem, for band-limited signals, the sampling frequency
must be at least twice the bandwidth of the signal. For example, if you
have a lowpass filter with the highest frequency of 10 MHz, and a sampling
frequency of 60 MHz, the highest frequency that can be handled by the
system without aliasing is 60 2 30/ = , which is greater than 10. You could

3-4

Multirate Filters

safely set M = 2 in this case, since 60 2 2 15/ /() = , which is still greater
than 10.

• If you wish to decimate a signal which does not meet the frequency criteria,
you can either:

- Interpolate first, and then decimate

- When decimating, you should apply the filter first, then perform the
decimation. When interpolating a signal, you should interpolate first,
then filter the signal.

• Typically in decimation of a signal a filter is applied first, thereby allowing
decimation without aliasing, as shown in the following figure:

• Conversely, a filter is typically applied after interpolation to avoid imaging:

• M must be an integer. Although, if you wish to obtain an M of 4/5, you
could interpolate by 4, and then decimate by 5, provided that frequency
restrictions are met. This type of multirate filter will be referred to as a
sample rate converter in the documentation that follows.

Multirate filters are most often used in stages. This technique is introduced
in the following section.

3-5

3 Designing Multirate and Multistage Filters

Multistage Filters

In this section...

“Why Are Multistage Filters Needed?” on page 3-6

“Optimal Multistage Filters in Filter Design Toolbox™ Software” on page
3-6

Why Are Multistage Filters Needed?
Typically used with multirate filters, multistage filters can bring efficiency
to a particular filter implementation. Multistage filters are composed of
several filters. These different parts of the mulitstage filter, called stages, are
connected in a cascade or in parallel. However such a design can conserve
resources in many cases. There are many different uses for a multistage filter.
One of these is a filter requirement that includes a very narrow transition
width. For example, you need to design a lowpass filter where the difference
between the pass frequency and the stop frequency is .01 (normalized).
For such a requirement it is possible to design a single filter, but it will
be very long (containing many coefficients) and very costly (having many
multiplications and additions per input sample). Thus, this single filter
may be so costly and require so much memory, that it may be impractical
to implement in certain applications where there are strict hardware
requirements. In such cases, a multistage filter is a great solution. Another
application of a multistage filter is for a mulitrate system, where there is a
decimator or an interpolator with a large factor. In these cases, it is usually
wise to break up the filter into several multirate stages, each comprising a
multiple of the total decimation/interpolation factor.

Optimal Multistage Filters in Filter Design Toolbox™
Software
As described in the previous section, within a multirate filter each
interconnected filter is called a stage. While it is possible to design
a multistage filter manually, it is also possible to perform automatic
optimization of a multistage filter automatically. When designing a filter
manually it can be difficult to guess how many stages would provide an
optimal design, optimize each stage, and then optimize all the stages together.
Filter Design Toolbox™ software enables you to create a Specifications Object,

3-6

Multistage Filters

and then design a filter using multistage as an option. The rest of the work is
done automatically. Not only does Filter Design Toolbox software determine
the optimal number of stages, but it also optimizes the total filter solution.

3-7

3 Designing Multirate and Multistage Filters

Example Case for Multirate/Multistage Filters

In this section...

“Example Overview” on page 3-8

“Single-Rate/Single-Stage Equiripple Design” on page 3-8

“Reducing Computational Cost Using Mulitrate/Multistage Design” on
page 3-9

“Comparing the Response” on page 3-10

“Further Performance Comparison” on page 3-10

Example Overview
This brief example shows the efficiency gains that are possible when using
multirate and multistage filters for certain applications. In this case a distinct
advantage is achieved over regular linear-phase equiripple design when a
narrow transition-band width is required. A more detailed treatment of the
key points made here can be found in the demo entitled “Efficient Narrow
Transition-Band FIR Filter Design”.

Single-Rate/Single-Stage Equiripple Design
Consider the following design specifications for a lowpass filter (where the
ripples are given in linear units):

Fpass = 0.13; % Passband edge
Fstop = 0.14; % Stopband edge
Rpass = 0.001; % Passband ripple, 0.0174 dB peak to peak
Rstop = 0.0005; % Stopband ripple, 66.0206 dB minimum attenuation

Hf = fdesign.lowpass(Fpass,Fstop,Rpass,Rstop,'linear');

A regular linear-phase equiripple design using these specifications can be
designed by evaluating the following:

Hd = design(Hf,'equiripple');

3-8

Example Case for Multirate/Multistage Filters

When you determine the cost of this design, you can see that 694 multipliers
are required.

cost(Hd)

ans =

Number of Multipliers : 694
Number of Adders : 693
Number of States : 693
MultPerInputSample : 694
AddPerInputSample : 693

Reducing Computational Cost Using
Mulitrate/Multistage Design
The number of multipliers required by a filter using a single state,
single rate equiripple design is 694. This number can be reduced using
multirate/multistage techniques. In any single-rate design, the number
of multiplications required by each input sample is equal to the number
of non-zero multipliers in the implementation. However, by using a
multirate/multistage design, decimation and interpolation can be combined
to lessen the computation required. For decimators, the average number
of multiplications required per input sample is given by the number of
multipliers divided by the decimation factor.

Hd_multi = design(Hf,'multistage');

You can then view the cost of the filter created using this design step, and you
can see that a significant cost advantage has been achieved.

>> cost(Hd_multi)

ans =

Number of Multipliers : 392
Number of Adders : 383
Number of States : 348
MultPerInputSample : 72.3333
AddPerInputSample : 70.1667

3-9

3 Designing Multirate and Multistage Filters

Comparing the Response
You can compare the responses of the equiripple design and this
multirate/multistage design using fvtool:

hfvt = fvtool(Hd,Hd_multi);
legend(hfvt,'Equiripple design', 'Multirate/multistage design')

Notice that the stopband attenuation for the multistage design is about twice
that of the other designs. This is because the decimators must attenuate
out-of-band components by 66 dB in order to avoid aliasing that would violate
the specifications. Similarly, the interpolators must attenuate images by
66 dB. You can also see that the passband gain for this design is no longer
0 dB, because each interpolator has a nominal gain (in linear units) equal
to its interpolation factor, and the total interpolation factor for the three
interpolators is 6.

Further Performance Comparison
You can check the performance of the multirate/multistage design by plotting
the power spectral densities of the input and the various outputs, and you can

3-10

Example Case for Multirate/Multistage Filters

see that the sinusoid at 0 4. π is attenuated comparably by both the equiripple
design and the multirate/multistage design.

n = 0:1799;
x = sin(0.1*pi*n') + 2*sin(0.15*pi*n');
y = filter(Hd,x);
y_multi = filter(Hd_multi,x);
[Pxx,w] = periodogram(x);
Pyy = periodogram(y);
Pyy_multi = periodogram(y_multi);
plot(w/pi,10*log10([Pxx,Pyy,Pyy_multi]));
xlabel('Normalized Frequency (x\pi rad/sample)');
ylabel('Power density (dB/rad/sample)');
legend('Input signal PSD','Equiripple output PSD',...

'Multirate/multistage output PSD')
axis([0 1 -50 30])
grid on

3-11

3 Designing Multirate and Multistage Filters

3-12

4

Converting from
Floating-Point to
Fixed-Point

Overview of Fixed-Point Filters
(p. 4-2)

Defines a fixed-point filter and
explains the need for it

Floating-Point to Fixed-Point
Conversion (p. 4-3)

Explains how to convert a
floating-point filter to a fixed-point
filter

Data Types (p. 4-11) Describes the different data types
used in Filter Design Toolbox™
software

4 Converting from Floating-Point to Fixed-Point

Overview of Fixed-Point Filters
The most common use of fixed-point filters is in the DSP chips, where the
data storage capabilities are limited, or embedded systems and devices where
low-power consumption is necessary. For example, the data input may come
from a 12 bit ADC, the data bus may be 16 bit, and the multiplier may have 24
bits. Within these space constraints, Filter Design Toolbox™ software enables
you to design the best possible fixed-point filter.

What Is a Fixed-Point Filter?
A fixed-point filter uses fixed-point arithmetic and is represented by an
equation with fixed-point coefficients. To learn about fixed-point math, see
“Fixed-Point Concepts” in “Fixed-Point Toolbox” documentation.

4-2

Floating-Point to Fixed-Point Conversion

Floating-Point to Fixed-Point Conversion

In this section...

“Process Overview” on page 4-3

“Designing the Filter” on page 4-3

“Quantizing the Coefficients” on page 4-4

“Dynamic Range Analysis” on page 4-7

“Comparing Magnitude Response and Magnitude Response Estimate” on
page 4-8

Process Overview
The conversion from floating-point to fixed-point consists of two main parts:
quantizing the coefficients and performing the dynamic range analysis.
Quantizing the coefficients is a process of converting the coefficients to
fixed-point numbers. The dynamic range analysis is a process of fine tuning
the scaling of each node to ensure that the fraction lengths are set for full
input range coverage and maximum precision. The following steps describe
this conversion process.

Designing the Filter
Start by designing a regular, floating-point, equiripple bandpass filter, as
shown in the following figure.

4-3

4 Converting from Floating-Point to Fixed-Point

where the passband is from .45 to .55 of normalized frequency, the amount
of ripple acceptable in the passband is 1 dB, the first stopband is from 0 to
.35 (normalized), the second stopband is from .65 to 1 (normalized), and both
stopbands provide 60 dB of attenuation.

To design this filter, evaluate the following code, or type it at the MATLAB®

command prompt:

f = fdesign.bandpass(.35,.45,.55,.65,60,1,60);
Hd = design(f, 'equiripple');
fvtool(Hd)

The last line of code invokes the Filter Visualization Tool, which displays the
designed filter. You use Hd, which is a double, floating-point filter, both as the
baseline and a starting point for the conversion.

Quantizing the Coefficients
The first step in quantizing the coefficients is to find the valid word length
for the coefficients. Here again, the hardware usually dictates the maximum
allowable setting. However, if this constraint is large enough, there is room for
some trial and error. Start with the coefficient word length of 8 and determine
if the resulting filter is sufficient for your needs.

4-4

Floating-Point to Fixed-Point Conversion

To set the coefficient word length of 8, evaluate or type the following code
at the MATLAB command prompt:

Hf = Hd;
Hf.Arithmetic = 'fixed';
set(Hf, 'CoeffWordLength', 8);
fvtool(Hf)

The resulting filter is shown in the following figure.

As the figure shows, the filter design constraints are not met. The attenuation
is not complete, and there is noise at the edges of the stopbands. You can
experiment with different coefficient word lengths if you like. For this
example, however, the word length of 12 is sufficient.

To set the coefficient word length of 12, evaluate or type the following code
at the MATLAB command prompt:

set(Hf, 'CoeffWordLength', 12);
fvtool(Hf)

The resulting filter satisfies the design constraints, as shown in the following
figure.

4-5

4 Converting from Floating-Point to Fixed-Point

Now that the coefficient word length is set, there are other data width
constraints that might require attention. Type the following at the MATLAB
command prompt:

>> info(Hf)
Discrete-Time FIR Filter (real)

Filter Structure : Direct-Form FIR
Filter Length : 48
Stable : Yes
Linear Phase : Yes (Type 2)
Arithmetic : fixed
Numerator : s12,14 -> [-1.250000e-001 1.250000e-001)
Input : s16,15 -> [-1 1)
Filter Internals : Full Precision

Output : s31,29 -> [-2 2) (auto determined)
Product : s27,29 -> [-1.250000e-001 1.250000e-001)...

(auto determined)
Accumulator : s31,29 -> [-2 2) (auto determined)
Round Mode : No rounding
Overflow Mode : No overflow

4-6

Floating-Point to Fixed-Point Conversion

You see the output is 31 bits, the accumulator requires 31 bits and the
multiplier requires 27 bits. A typical piece of hardware might have a 16 bit
data bus, a 24 bit multiplier, and an accumulator with 4 guard bits. Another
reasonable assumption is that the data comes from a 12 bit ADC. To reflect
these constraints type or evaluate the following code:

set (Hf, 'InputWordLength', 12);
set (Hf, 'FilterInternals', 'SpecifyPrecision');
set (Hf, 'ProductWordLength', 24);
set (Hf, 'AccumWordLength', 28);
set (Hf, 'OutputWordLength', 16);

Although the filter is basically done, if you try to filter some data with it at
this stage, you may get erroneous results due to overflows. Such overflows
occur because you have defined the constraints, but you have not tuned the
filter coefficients to handle properly the range of input data where the filter
is designed to operate. Next, the dynamic range analysis is necessary to
ensure no overflows.

Dynamic Range Analysis
The purpose of the dynamic range analysis is to fine tune the scaling of the
coefficients. The ideal set of coefficients is valid for the full range of input
data, while the fraction lengths maximize precision. Consider carefully the
range of input data to use for this step. If you provide data that covers the
largest dynamic range in the filter, the resulting scaling is more conservative,
and some precision is lost. If you provide data that covers a very narrow
input range, the precision can be much greater, but an input out of the design
range may produce an overflow. In this example, you use the worst-case input
signal, covering a full dynamic range, in order to ensure that no overflow
ever occurs. This worst-case input signal is a scaled version of the sign of
the flipped impulse response.

To scale the coefficients based on the full dynamic range, type or evaluate
the following code:

x = 1.9*sign(fliplr(impz(Hf)));
Hf = autoscale(Hf, x);

To check that the coefficients are in range (no overflows) and have maximum
possible precision, type or evaluate the following code:

4-7

4 Converting from Floating-Point to Fixed-Point

fipref('LoggingMode', 'on', 'DataTypeOverride', 'ForceOff');
y = filter(Hf, x);
fipref('LoggingMode', 'off');
R = qreport(Hf)

Where R is shown in the following figure:

The report shows no overflows, and all data falls within the designed range.
The conversion has completed successfully.

Comparing Magnitude Response and Magnitude
Response Estimate
You can use the fvtool GUI to do final analysis on your quantized filter,
to see the effects of the quantization on stopband attenuation, etc. Two
important last checks when analyzing a quantized filter are the Magnitude
Response Estimate and the Round-off Noise Power Spectrum. The value of the
Magnitude Response Estimate analysis can be seen in the following example.

4-8

Floating-Point to Fixed-Point Conversion

Viewing Magnitude Response Estimate

Begin by designing a simple lowpass filter using the command.

h = design(fdesign.lowpass, 'butter');

Now set the arithmetic to fixed-point.

h.arithmetic = 'fixed';

When you take a look at the Magnitude response of the filter from the
Analysis menufvtool, the quantized filter seems to match the original
filter quite well.

However if you look at the Magnitude Response Estimate plot from the
Analysis menu, you will see that the actual filter created may not perform
nearly as well as indicated by the Magnitude Response plot.

4-9

4 Converting from Floating-Point to Fixed-Point

This is because by using the noise-based method of the Magnitude Response
Estimate, you estimate the complex frequency response for your filter as
determined by applying a noise- like signal to the filter input. Magnitude
Response Estimate uses the Monte Carlo trials to generate a noise signal
that contains complete frequency content across the range 0 to Fs. For more
information about analyzing filters in this way, refer to the section titled
Analyzing Filters with a Noise-Based Method in the User Guide.

4-10

Data Types

Data Types

In this section...

“Data Type Support” on page 4-11

“Fixed Data Type Support” on page 4-11

“Single Data Type Support” on page 4-11

Data Type Support
There are three different data types supported in Filter Design Toolbox™
software:

• Fixed — Requires Fixed Point Toolbox and is supported by packages listed
in “Fixed Data Type Support” on page 4-11.

• Double — Double precision, floating point and is the default data type for
Filter Design Toolbox software; accepted by all functions

• Single — Single precision, floating point and is supported by specific
packages outlined in “Single Data Type Support” on page 4-11.

Fixed Data Type Support
To use fixed data type, you must have Fixed Point Toolbox. Type ver at the
MATLAB® command prompt to get a listing of all installed products.

The fixed data type is reserved for any filter whose property arithmetic is
set to fixed. Furthermore all functions that work with this filter, whether in
analysis or design, also accept and support the fixed data types.

To set the filter’s arithmetic property:

>> f = fdesign.bandpass(.35,.45,.55,.65,60,1,60);
>> Hf = design(f, 'equiripple');
>> Hf.Arithmetic = 'fixed';

Single Data Type Support
The support of the single data types comes in two varieties. First, input data
of type single can be fed into a double filter, where it is immediately converted

4-11

4 Converting from Floating-Point to Fixed-Point

to double. Thus, while the filter still operates in the double mode, the single
data type input does not break it. The second variety is where the filter itself
is set to single precision. In this case, it accepts only single data type input,
performs all calculations, and outputs data in single precision. Furthermore,
such analyses as noisepsd and freqrespest also operate in single precision.

To set the filter to single precision:

>> f = fdesign.bandpass(.35,.45,.55,.65,60,1,60);
>> Hf = design(f, 'equiripple');
>> Hf.Arithmetic = 'single';

4-12

5

Designing Adaptive Filters

Adaptive Filters Tutorial (p. 5-2) Uses a signal enhancement
application to introduce adaptive
filters

5 Designing Adaptive Filters

Adaptive Filters Tutorial

In this section...

“Signal Enhancement Example Overview” on page 5-2

“Create the Signals for Adaptation” on page 5-2

“Construct Two Adaptive Filters” on page 5-3

“Choose the Step Size” on page 5-4

“Set the Adapting Filter Step Size” on page 5-5

“Filter with the Adaptive Filters” on page 5-5

“Compute the Optimal Solution” on page 5-5

“Plot the Results” on page 5-6

“Compare the Final Coefficients” on page 5-7

“Reset the Filter Before Filtering” on page 5-7

“Investigate Convergence Through Learning Curves” on page 5-8

“Compute the Learning Curves” on page 5-9

“Compute the Theoretical Learning Curves” on page 5-10

Signal Enhancement Example Overview
This demonstration illustrates one way to use a few of the adaptive filter
algorithms provided in the toolbox. In this example, a signal enhancement
application is used as an illustration. While there are about 30 different
adaptive filtering algorithms included with the toolbox, this example
demonstrates two algorithms — least means square (LMS), adaptfilt.lms,
and normalized LMS, adaptfilt.nlms, for adaptation.

Create the Signals for Adaptation
The goal is to use an adaptive filter to extract a desired signal from a
noise-corrupted signal by filtering out the noise. The desired signal (the
output from the process) is a sinusoid with 1000 samples.

n = (1:1000)';
s = sin(0.075*pi*n);

5-2

Adaptive Filters Tutorial

To perform adaptation requires two signals:

• a reference signal

• a noisy signal that contains both the desired signal and an added noise
component.

Generate the Noise Signal
To create a noise signal, assume that the noise v1 is autoregressive, meaning
that the value of the noise at time t depends only on its previous values and
on a random disturbance.

v = 0.8*randn(1000,1); % Random noise part.
ar = [1,1/2]; % Autoregression coefficients.
v1 = filter(1,ar,v); % Noise signal. Applies a 1-D digital

% filter.

Corrupt the Desired Signal to Create a Noisy Signal
To generate the noisy signal that contains both the desired signal and the
noise, add the noise signal v1 to the desired signal s. The noise-corrupted
sinusoid x is

x = s + v1;

where s is the desired signal and the noise is v1. Adaptive filter processing
seeks to recover s from x by removing v1. To complete the signals needed to
perform adaptive filtering, the adaptation process requires a reference signal.

Create a Reference Signal
Define a moving average signal v2 that is correlated with v1. This v2 is the
reference signal for the examples.

ma = [1, -0.8, 0.4 , -0.2];
v2 = filter(ma,1,v);

Construct Two Adaptive Filters
Two similar adaptive filters — LMS and NLMS — form the basis of this
example, both sixth order. Set the order as a variable in MATLAB® and
create the filters.

5-3

5 Designing Adaptive Filters

L = 7;

hlms = adaptfilt.lms(7);

hnlms = adaptfilt.nlms(7);

Choose the Step Size
LMS-like algorithms have a step size that determines the amount of
correction applied as the filter adapts from one iteration to the next. Choosing
the appropriate step size is not always easy, usually requiring experience in
adaptive filter design.

• A step size that is too small increases the time for the filter to converge on
a set of coefficients. This becomes an issue of speed and accuracy.

• One that is too large may cause the adapting filter to diverge, never
reaching convergence. In this case, the issue is stability — the resulting
filter might not be stable.

As a rule of thumb, smaller step sizes improve the accuracy of the convergence
of the filter to match the characteristics of the unknown, at the expense of the
time it takes to adapt.

The toolbox includes an algorithm — maxstep — to determine the maximum
step size suitable for each LMS adaptive filter algorithm that still ensures
that the filter converges to a solution. Often, the notation for the step size is µ.

>> [mumaxlms,mumaxmselms] = maxstep(hlms,x)
[mumaxnlms,mumaxmsenlms] = maxstep(hnlms);
Warning: Step size is not in the range 0 < mu < mumaxmse/2:
Erratic behavior might result.
> In adaptfilt.lms.maxstep at 32

mumaxlms =

0.2096

mumaxmselms =

0.1261

5-4

Adaptive Filters Tutorial

Set the Adapting Filter Step Size
The first output of maxstep is the value needed for the mean of the coefficients
to converge while the second is the value needed for the mean squared
coefficients to converge. Choosing a large step size often causes large
variations from the convergence values, so choose smaller step sizes generally.

hlms.StepSize = mumaxmselms/30;
% This can also be set graphically: inspect(hlms)
hnlms.StepSize = mumaxmsenlms/20;
% This can also be set graphically: inspect(hnlms)

If you know the step size to use, you can set the step size value with the step
input argument when you create your filter.

hlms = adaptfilt.lms(N,step); Adds the step input argument.

Filter with the Adaptive Filters
Now you have set up the parameters of the adaptive filters and you are ready
to filter the noisy signal. The reference signal, v2, is the input to the adaptive
filters. x is the desired signal in this configuration.

Through adaptation, y, the output of the filters, tries to emulate x as closely
as possible.

Since v2 is correlated only with the noise component v1 of x, it can only
really emulate v1. The error signal (the desired x), minus the actual output
y, constitutes an estimate of the part of x that is not correlated with v2 — s,
the signal to extract from x.

[ylms,elms] = filter(hlms,v2,x);
[ynlms,enlms] = filter(hnlms,v2,x);

Compute the Optimal Solution
For comparison, compute the optimal FIR Wiener filter.

bw = firwiener(L-1,v2,x); % Optimal FIR Wiener filter
yw = filter(bw,1,v2); % Estimate of x using Wiener filter
ew = x - yw; % Estimate of actual sinusoid

5-5

5 Designing Adaptive Filters

Plot the Results
Plot the resulting denoised sinusoid for each filter — the Wiener filter, the
LMS adaptive filter, and the NLMS adaptive filterm — to compare the
performance of the various techniques.

plot(n(900:end),[ew(900:end), elms(900:end),enlms(900:end)]);
legend('Wiener filter denoised sinusoid',...

'LMS denoised sinusoid', 'NLMS denoised sinusoid');
xlabel('Time index (n)');
ylabel('Amplitude');

As a reference point, include the noisy signal as a dotted line in the plot.

hold on
plot(n(900:end),x(900:end),'k:')
xlabel('Time index (n)');
ylabel('Amplitude');
hold off

5-6

Adaptive Filters Tutorial

Compare the Final Coefficients
Finally, compare the Wiener filter coefficients with the coefficients of the
adaptive filters. While adapting, the adaptive filters try to converge to the
Wiener coefficients.

[bw.' hlms.Coefficients.' hnlms.Coefficients.']

ans =

1.0317 0.8879 1.0712
0.3555 0.1359 0.4070
0.1500 0.0036 0.1539
0.0848 0.0023 0.0549
0.1624 0.0810 0.1098
0.1079 0.0184 0.0521
0.0492 -0.0001 0.0041

Reset the Filter Before Filtering
Adaptive filters have a PersistentMemory property that you can use to
reproduce experiments exactly. By default, the PersistentMemory is false.

5-7

5 Designing Adaptive Filters

The states and the coefficients of the filter are reset before filtering and the
filter does not remember the results from previous times you use the filter.

For instance, the following successive calls produce the same output when
PersistentMemory is false.

[ylms,elms] = filter(hlms,v2,x);
[ylms2,elms2] = filter(hlms,v2,x);

To keep the history of the filter when filtering a new set of data, enable
persistent memory for the filter by setting the PersistentMemory property
to true. In this configuration, the filter uses the final states and coefficients
from the previous run as the initial conditions for the next run and set of data.

[ylms,elms] = filter(hlms,v2,x);
hlms.PersistentMemory = true;
[ylms2,elms2] = filter(hlms,v2,x); % No longer the same

Setting the property value to true is useful when you are filtering large
amounts of data that you partition into smaller sets and then feed into the
filter using a for-loop construction.

Investigate Convergence Through Learning Curves
To analyze the convergence of the adaptive filters, look at the learning curves.
The toolbox provides methods to generate the learning curves, but you need
more than one iteration of the experiment to obtain significant results.

This demonstration uses 25 sample realizations of the noisy sinusoids.

n = (1:5000)';
s = sin(0.075*pi*n);
nr = 25;
v = 0.8*randn(5000,nr);
v1 = filter(1,ar,v);
x = repmat(s,1,nr) + v1;
v2 = filter(ma,1,v);

5-8

Adaptive Filters Tutorial

Compute the Learning Curves
Now compute the mean-square error. To speed things up, compute the error
every 10 samples.

First, reset the adaptive filters to avoid using the coefficients it has already
computed and the states it has stored.

reset(hlms);
reset(hnlms);
M = 10; % Decimation factor
mselms = msesim(hlms,v2,x,M);
msenlms = msesim(hnlms,v2,x,M);
plot(1:M:n(end),[mselms,msenlms])
legend('LMS learning curve','NLMS learning curve')
xlabel('Time index (n)');
ylabel('MSE');

In the next plot you see the calculated learning curves for the LMS and
NLMS adaptive filters.

5-9

5 Designing Adaptive Filters

Compute the Theoretical Learning Curves
For the LMS and NLMS algorithms, functions in the toolbox help you compute
the theoretical learning curves, along with the minimum mean-square error
(MMSE) the excess mean-square error (EMSE) and the mean value of the
coefficients.

MATLAB may take some time to calculate the curves. The figure shown after
the code plots the predicted and actual LMS curves.

reset(hlms);
[mmselms,emselms,meanwlms,pmselms] = msepred(hlms,v2,x,M);
plot(1:M:n(end),[mmselms*ones(500,1),emselms*ones(500,1),...

pmselms,mselms])
legend('MMSE','EMSE','predicted LMS learning curve',...

'LMS learning curve')
xlabel('Time index (n)');
ylabel('MSE');

5-10

A

Examples

Use this list to find examples in the documentation.

A Examples

Getting Started
Example — Design a Filter in Two Steps on page 2-3
“Floating-Point to Fixed-Point Conversion” on page 4-3
“Adaptive Filters Tutorial” on page 5-2

Using Filterbuilder
Example — Using Filterbuilder to Design a Simple Filter on page 2-7

A-2

Index

IndexD
data types 4-11

fixed 4-11
fixed-point

floating-point 4-11
single 4-11

decimation factor 3-2
decimator 3-2
design a filter 2-3

filterbuilder 2-7

F
filter cost 3-2
filter design

adaptive filter 5-2
Filter Design

Multirate 3-8
Multistage 3-8
Narrow Transition-Band 3-8

filterbuilder 2-7
fixed-point filter 4-2

conversion from floating-point 4-3

definition 4-2

G
getting started 2-2
getting started example 2-2

I
interpolator 3-2

M
M factor 3-2
multirate filter

definition 3-2
multistage filter

definition 3-6
uses 3-6

T
toolbox

getting started 2-2

Index-1

	toc
	Product Overview
	Introduction
	Uses with Other MathWorks Products
	Key Features

	Designing a Filter in Two Steps
	How the Toolbox Works
	Basic Filter Design Process
	Example — Design a Filter in Two Steps
	Using Filterbuilder to Design a Filter
	Example — Using Filterbuilder to Design a Simple Filter

	Designing Multirate and Multistage Filters
	Multirate Filters
	Why Are Multirate Filters Needed?
	Overview of Multirate Filters

	Multistage Filters
	Why Are Multistage Filters Needed?
	Optimal Multistage Filters in Filter Design Toolbox Software

	Example Case for Multirate/Multistage Filters
	Example Overview
	Single-Rate/Single-Stage Equiripple Design
	Reducing Computational Cost Using Mulitrate/Multistage Design
	Comparing the Response
	Further Performance Comparison

	Converting from Floating-Point to Fixed-Point
	Overview of Fixed-Point Filters
	What Is a Fixed-Point Filter?

	Floating-Point to Fixed-Point Conversion
	Process Overview
	Designing the Filter
	Quantizing the Coefficients
	Dynamic Range Analysis
	Comparing Magnitude Response and Magnitude Response Estimate
	Viewing Magnitude Response Estimate

	Data Types
	Data Type Support
	Fixed Data Type Support
	Single Data Type Support

	Designing Adaptive Filters
	Adaptive Filters Tutorial
	Signal Enhancement Example Overview
	Create the Signals for Adaptation
	Generate the Noise Signal
	Corrupt the Desired Signal to Create a Noisy Signal
	Create a Reference Signal

	Construct Two Adaptive Filters
	Choose the Step Size
	Set the Adapting Filter Step Size
	Filter with the Adaptive Filters
	Compute the Optimal Solution
	Plot the Results
	Compare the Final Coefficients
	Reset the Filter Before Filtering
	Investigate Convergence Through Learning Curves
	Compute the Learning Curves
	Compute the Theoretical Learning Curves

	Examples
	Getting Started
	Using Filterbuilder

	Index

